Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Intervalo de año de publicación
1.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21260221

RESUMEN

Genomic regions have been associated with COVID-19 susceptibility and outcomes, including the chr12q24.13 locus encoding antiviral proteins OAS1-3. Here, we report genetic, functional, and clinical insights into genetic associations within this locus. In Europeans, the risk of hospitalized vs. non-hospitalized COVID-19 was associated with a single 19Kb-haplotype comprised of 76 OAS1 variants included in a 95% credible set within a large genomic fragment introgressed from Neandertals. The risk haplotype was also associated with impaired spontaneous but not treatment-induced SARS-CoV-2 clearance in a clinical trial with pegIFN-{lambda}1. We demonstrate that two exonic variants, rs10774671 and rs1131454, affect splicing and nonsense-mediated decay of OAS1. We suggest that genetically-regulated loss of OAS1 expression contributes to impaired spontaneous clearance of SARS-CoV-2 and elevated risk of hospitalization for COVID-19. Our results provide the rationale for further clinical studies using interferons to compensate for impaired spontaneous SARS-CoV-2 clearance, particularly in carriers of the OAS1 risk haplotypes.

2.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21253596

RESUMEN

Clinical data networks that leverage large volumes of data in electronic health records (EHRs) are significant resources for research on coronavirus disease 2019 (COVID-19). Data harmonization is a key challenge in seamless use of multisite EHRs for COVID-19 research. We developed a COVID-19 application ontology in the national Accrual to Clinical Trials (ACT) network that enables harmonization of data elements that that are critical to COVID-19 research. The ontology contains over 50,000 concepts in the domains of diagnosis, procedures, medications, and laboratory tests. In particular, it has computational phenotypes to characterize the course of illness and outcomes, derived terms, and harmonized value sets for SARS-CoV-2 laboratory tests. The ontology was deployed and validated on the ACT COVID-19 network that consists of nine academic health centers with data on 14.5M patients. This ontology, which is freely available to the entire research community on GitHub at https://github.com/shyamvis/ACT-COVID-Ontology, will be useful for harmonizing EHRs for COVID-19 research beyond the ACT network.

3.
Immune Network ; : 208-216, 2002.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-76380

RESUMEN

BACKGROUND: Reactive oxygen and nitrogen are produced by rheumatoid arthritis (RA) synovial tissue and can induce mutations in key genes. Normally, this process is prevented by a DNA mismatch repair (MMR) system that maintains sequence fidelity. Key members of the MMR system include MutS alpha (comprised of hMSH2 and hMSH6), which can sense and repair single base mismatches and 8-oxoguanine, and MutS beta (comprised of hMSH2 and hMSH3), which repairs longer insertion/deletion loops. METHODS: To provide further evidence of DNA damage, we analyzed synovial tissues for microsatellite instability (MSI). MSI was examined by PCR on genomic DNA of paired synovial tissue and peripheral blood cells (PBC) of RA patients using specific primer sequences for 5 key microsatellites. RESULTS: Surprisingly, abundant MSI was observed in RA synovium compared with osteoarthritis (OA) tissue. Western blot analysis of the same tissues for the expression of MMR proteins demonstrated decreased hMSH6 and increased hMSH3 in RA synovium. To evaluate potential mechanisms of MMR regulation in arthritis, fibroblast-like synoviocytes (FLS) were isolated from synovial tissues and incubated with the nitric oxide donor S-nitroso-N-acetylpenicillamine (SNAP). Western blot analysis demonstrated constitutive expression of hMSH2, 3 and 6 in RA and OA FLS. When FLS were cultured with SNAP, the RA synovial pattern of MMR expression was reproduced (high hMSH3, low hMSH6). CONCLUSION: Therefore, oxidative stress can relax the DNA MMR system in RA by suppressing hMSH6. Decreased hMSH6 can subsequently interfere with repair of single base mutations, which is the type observed in RA. We propose that oxidative stress not only creates DNA adducts that are potentially mutagenic, but also suppresses the mechanisms that limit the DNA damage.


Asunto(s)
Humanos , Artritis , Artritis Reumatoide , Células Sanguíneas , Western Blotting , Aductos de ADN , Daño del ADN , Reparación de la Incompatibilidad de ADN , Reparación del ADN , ADN , Inestabilidad de Microsatélites , Repeticiones de Microsatélite , Óxido Nítrico , Nitrógeno , Osteoartritis , Estrés Oxidativo , Oxígeno , Reacción en Cadena de la Polimerasa , S-Nitroso-N-Acetilpenicilamina , Membrana Sinovial , Donantes de Tejidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...